SPACE RESEARCH COORDINATION CENTER

UNIVE'RSITY
PITTSBURGH

k\\'// Z

171187

CROSS SECTION FOR ENERGY TRANSFER

602

PACILITY FORM

BETWEEN TWO MOVING PARTICLES

BY

E. GERJUOY
DEPARTMENT OF PHYSICS

SRCC REPORT NO, 25

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PENNSYLVANIA

21 MARCH 1966

Nbé -23@0 :!, GPO PRICE $

CFSTI PRICE(S) $

{ACCESSION NUMBER) {THRU)

s 4 Hard 7290
‘ (PAGES) , (cop, ard co (H C) L
-5 7 29 i

““NASA CR OR TMX OR AD NUMBER) (CATEGORS)

Microfiche (MF)

75

ff 653 July 85



The Space ResearchCoordination Center, establishedin May, 1963, coordinates
space-oriented research in the various schools, divisionsand centers of the University of
Pittsburgh. Members of the various faculties of the University may affiliate with the
Center by accepting appointments as Staff Members. Some, but by no means all, Staff
Members carry outtheir researches in the Space ResearchCoordination Center building.
The Center's policies are determined by an SRCC Faculty Council.

The Center provides partial support for space-oriented research, particularly for
new faculty members; it awards annually a number of postdoctoral fellowships and NASA
predoctoral traineeships; it issues periodic reports of space-oriented research and a
comprehensive annual report. In concert with the University's Knowledge Availability
Systems Center it seeks to assist in the orderly transfer of new space-generated knowl-
edge into industrial application.

The Center is supported by a Research Grant (NsG-416) from the National Aero~
nautics and Space Administration, strongly supplemented by grants from The A. W.
Mellon Educational and Charitable Trust, the Maurice Falk Medical Fund, the Richard
King Mellon Foundation and the Sarah Mellon Scaife Foundation. Much of the work
described in SRCC reports is financed by other grants, made to individual faculty
members.




E
|

Cross Section for Energy Transfer Between Two Moving Particles

E. GerJjuoy

This technical report embodies research sponsored by the
National Aeronautics and Space Administration under Contract number
NGR-39-011-035 to the University of Pittsburgh, Principal Investigator

Edward Gerjuoy.

Reproduction in whole or in part is permitted for any purpose of the

United States Government.



- B X — T e—

-

Abstract ~ o
X U (~ J /

The classical cross section o for producing a specified energy

AE’
transfer AE in the collision of two particles 1,2 having arbitrary masses
and velocities;xl,xz in»the laboratory system, is derived. The effective
average (for fixed speeds vl,yz) of o,p over all directions of the particle
velocitiesvxl and/or*xz then is computed. These results are required in
the classical calculations of atomic collision cross sections via the
procedures recently proposed by Gryzinski. The method will yield the

average of any F(v,V, cos 8) over all directions of the particle velocities,

where'x =¥ - 32;*X is the velocity of the center of mass; and & is the

angle between v and V. ‘ ./
oo \/’\M/ﬂ J



-

I. Introduction

Recently Gryzinski has published three long papersl'3 detailing
his procedures for performing classical (non-quantum) calculations of
atomic collision cross sections. The utility of these procedures in
electron-atom and electron-mo.acule collisions has been examined by
Bauer and Bar*tky.,h For such collisions one requires the cross section
(v1%~2) for producing an energy transfer AE in the collision of two
electrons moving with arbitrary velocitieswgi\x2 in the laboratory
system. There also is required o:éf(vl,va) the effective average of
AE&»I’ Yo ) over all orientations of X and/oréya for fixed speeds
Vi sVpe Gryzinski has derived expressions for these quantities, but use
of these formulas is complicated by an extremely awkward notation; more-
over Gryzinski's expreésions involve some subsidiary .pproximations. For

5

these reasons, Stabler” has rederived--and obtained in much simpler form--

the exact expressions for @BAE eff and Org in electron-electron collisionms.

Similar expressions have been obtained by Ochkur and'Petrun'kin.6 However,

5,6

these authors have rederived o E only for electron-electron collisions,

A
i.e., for colliding particles of equal mass, whereas for calculations of,

and

e.g., ion-atom collisions by Gryzinski's procedures one requires OAE
zéf for collisions of unequally massive charged particles.
This paper derives the required exact formulas for %\g and oZéf in

the unequal mass case. Application of these formulas to examination of .
the utility of Gryzinski's procedures in charge transfer reactions is under
way (in cooperation with Hsiang Tai and Jean Welker). This paper obtains
the final formula for ozéf(v
it will be clear, however, that the method of performing the average ovef

all orientations in applicable to arbitrary interactions, as well as to the

averages of quantities other than oAngl,xé).

1’v2) in only one case, namely Coulomb collisions;
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IXI. Calculation of GAE

I consider a collision between particles 1 and 2, whose initial
velocities in the laboratory system are Xy = ik and "YQ = Voo respectively.
Their laboratory velocities after the collision will be .x]'_ = vi&]'_ and
ul’é = vé&éo Correspondingly, the velocities of these particles measured by
an observer moving with the center of mass are v. = v.n., '122 = ;zée (initial)

L 1wl

and ji = *\-ris]'_, 'ﬁé = w'réfx'é final). It is presumed that the coordinate axes

of the laboratory and center of mass observers are parallel, so that the

components of the vectors defined above are consistent with

W1 Tk *dy ete- N (1)

where V is the center of mass velocity measured by the laboratory observer.
W

w = iy = M (g + ma,)

(2)
M= ml + m2
Also
- -1
‘\Xl = m2M
(3a)
- -1
‘»v‘2 = -mlM v
v! = nM v
1l 2 W (3b)
-, . -1,
W2 Moy
where
JEY Cd =R )
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l are the relative velocities before and after the collision.
9 For given w1 2a¥o the vectors 'y A are determined, so that for given
} w1 Wo the polar axis of a fixed system of spherical coordinates can be
' chosen along x; in this system the polar and azimuth angles.of é and é" are
‘ 8,0 and 6',¢' respectively. Now suppose 1 is regarded as the "incident"
i particle. Them the emergy gain AE by particle 2 (as seen im the laboratory
i system) is7
| 1 2 1 2 1 2 1 2
| AE = amVpy -2 WV "M% 2 mY)
' (5)
- o' — ¥ 2 - '« B!
i m2¥a (»3’2 wvz) = uvV (cos 8 - cos 8'),
where u = mlsz-l is the reduced mass. Eg. (5) shows that for given
J13Y, the quantity AE is a fumctiom omly of 8'. In fact
| .
‘ a(AE) = uvV sin 8' a8’ (6)
' Let "(31\32) be the total cross section for givenwvl,'ye. Then the
B quantity OAE(txl’xZ) is defined by
o(¥1e) = I A(8E)0, (%) 3¥) (1)
b But if o(v; é -rMif') is the correspording differential cross section for
l scattering in the center of mass system (wherein the collisiom can change
only the directiom but not the magnitude of the relative velocity), it also
' is true that
a'alv: n gl
| e = | 5
' - J 45'dB'sin §' 5(vs & + A") (8b)
WA M
= Ll aam)agiains 5 + ), (8e)
I A LYY
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using (6).
Eqs. (7) amd (8¢c) imply
1 3'glv:- m > mt
D ﬁj as'a(v; » > »') | (9)

For fixed v,,V,, i.e., for fixed 8,6, the right side of {9) is a functiom
of 8' amd therefore, by (6), of AE. For every value of §' the integral in
Eq. (9) rums over all values of §'from O to 2w, because (for amy imitial
B,¢) the fimal relative velocity NY»' camr have any directiom in space. The
cross sectiom o(v; & > 54' ), though depemdent omly om the angle between
é a,ndj\', can be a fumctiom of ¢'.

The results so far hold for aay o. For defimitemess, I now specialize
to the Coulomb case, |

Z2.Z.e
v 2 > 3') = Y+ 2_ L1
a(v; :A-»‘:') = 5 cse’ 3 X (10)

2uv
where the ceater of mass system scatterimg angle x is the angle between
2 and n'; and 2 e, Z,e are the charges carried by particles 1,2. Substitutiag

W M 1 2
Eq. (10) in Eq. (9), and employing

siah -é- X = %— (1 - cos x)2 (11a)
cos X = co8 0 cos 0' + sin 8 sin 8' cos (¢ - ¢') (11v)
one finds
2‘2 2n
Z.2,.e
1 12 1
0, (Y ) = = — ) (12)
aEN1MR” T W\ T2 (a-t cos )2
0
where
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a=1=cos 6 cos 8§'
(13)
b = sin 6 sin B'
8 2 2
When  a° > b, as is the case for a,b of (13)
an »
1 2ra
a¢ = (1k)
(a~b cos ¢)2 (a.2—b2)3[2
0
Thus 2
2.2, ’ = =
(v v.) = on 172 (1 - cos 8 cos §°') (15)
12 vy uv2 |cos & - cos 5"3
Or, using (5),
2
2n(z,2,e%) v° 2z . AE =
(vl,vz) = 5 3 (1 - cos™8 + v o8 8) (16a)
v |AE|
with the restriction, also from (5), that
- AE
-l gcos 8-l __ (16v)

which guarantees opg> 0- For given.xl,x » if (16b) is not satisfied, then

(vlwz) =0, (16¢)

i.e., values of AE for which (16b) fails cannot occur.
Egs. (16) are the desired result for 0,g> in what proves to be a
convenient form for calculating <oAE>° In terms °r;71u¥ » the quantities

v, V, cos 8 are, using Eqs. (2) and (L),

- 2 2 1/2
= (vl +v, - 2v vamlwaz) (17a)
VaM (m2v2 +m vg + 2m1m2vlv2al;pa)l/2 (17v)

- 1 -1, 2 2
cos 8 = (vV) \‘va = (MvV) [mlvl - m,v, + (m2 - ml) 1Vohy 4 2] (17¢)
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It cam be shown that ia the special case m, =m, = m, Egs. (16) reduce

to the seemingly very different expression for O\ given by Stabler,5

9

nemely”’ his Eq. (8).
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III. Calculation of ozgf

Suppose the target particle 2 has an isotropic velocity distribution
in the laboratory system. Then for any actualel the effective O)p is defimed
by |

eff 1 .
V1%E = T I a2, [0 - vaBoloaplyy o¥n) (18)

This definition of the effective OAR is appropriate when, e.g., the particles

2 are bound electromns in stationary atoms being ionized by & beam of protons
(particles 1). If the atoms have velocity&ya # 0 in the laboratory system,
e.g., if the atoms form a beam, the velocity distridbution of 2, though iso-
tropic in a coordinate system moving with the -atoms, is not isotropic in the
laboratory system. In this event, realizing that the total reaction rate
(e.g., the total rate of iomization) is independent of the observer's velocity,
the simplest procedure is to compute the total reaction rate in the system
where the velocity of 1 now is W1 t¥ae

Once, as in (18), the distribution of ¥, is accepted as isotropic, the

2
value of ozgf obviously cannot depend on the direction‘of'ahf In other
words ozgf now depends only on the magnitudes °fM31§Y2’ and so can be
averaged over nl as well asnaz. For the Coulomb case, therefore, using (16)
W
2,2
(2.2.e°) 2
eff 172 v 2= _ AE -
O, (v ,v,) = ——=—— | dn.dn,-= (1 - cos“8 + == cos 6) (19)
AE 1?72 81'AE!3V.‘ wiwme v nvV

where v,V,cosa are given by Eqs. (17), and the allowed ranges Oanl’w92

must be consistemt with (16b), i.e., in (19) appear only thosehgl‘az for which
OAEcﬁlﬁ&E) # 0. Specificislly, for given v,,v,,AE the integral (19) runs

only over those directlonﬁwyl%g2 for which
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AE = ‘
-1+uvv§cose\<1 AE > 0

-1 <cosBsl+—2Z

= AE ¢ O

Despite its apparent complexity, the integral (19) can be evaluated in

closed form. For any integrand Fg'pl,'x_zz,vl,va) :

1l 2 2
[Fdﬁldéa "2, Jvldﬁl"zdﬁaﬂ.?l WBasVy5Vp)
1

N o

3

1 |2 5
¥1dn,a%, 9,d0,49,8(9) - v,)6(e,

/

[\S IV

vev
1

(20a)

(20b)

= v )F(n),0,,9,,9,)

But ;ridgld;rl is the volume element d-l‘}ﬁl in the space formed by the components

of the vector W\vl =Vl Thus Eq. (19)‘ can be replaced by

eft (leaez)a A e o - V2 2= AE =
Op * 3375 dxlgxac(vl-vl)ﬁ(va-va)—v(l-cos 0+ ooV co8 )
8n|AE| vivo

with the understanding that under the integral sign ;1,32 now replace
V1V, inEqgs. (17) for v, V, cos 8. Consequently, recalling (2) and (4),

the equations relating 5{1,&2 to s X in (21) must be

~ ~ _1
JIEVE s em My
. evn =V -mM Yy
w2 232 WA 1 w

With (22), the Jacobian of the transformation from 5@71‘132 to d'}rd.x is

unity. Hence,

eft (zlzaez)z . G )v2 2. AE
BE " oy |aE|Sv3v2 SO AN IS TR I T uvv

12

(21)

(22)

(23)
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vwherein, recalling § = cos-lgg;&av),

;l = (V2 + mgm'av2 + 2m2M"lvV cos 3)1/2 (2ka)
;2 = (v2 + m§M—2v2 - 2m1M—lvV cos 5)1/2 (2kv)

Since (20) and the imtegrand in (23) do not involve n or the azimuth angle

$, Eq. (23). simplifies to

eff 1r(2122‘32)2 " -
oSt v v ) = —22 _ lav lav |45 sin 5
AE "1 IAE|3V3V2

12 o Jo

'vahd(;rl-vl)s(§2-v2)(l - c032§+ ﬁf—v cos 8) (25)

vwhere the limits of integration over 8 are determined by (20).

Integrate (25) over the allowed range of cos 8, recalling:tha}

-1
]ur(x)é[g(x)] = E{I(%x&)“ Ir(x)} (26)

x = Xi

where x, are the roots of g(x) = 0 in the integration interval. Because

of (2ka,, the quantity ;rl-vix‘ as a functioé’- of cos & vanishes only at

cos 5, = (2m M w) 1{vZ - V2 - mAM v2) (27)
g = lemy vy 2 ) : (21)
Thus
2,2 Sl
_:}f;r(v %) "(le2e 5 “v[dvvvh(mzm VV‘ (l-c03261+€.-_'7'; cos ei)
1 laE|3v3v2 | \ 1 /
12
MV2 n v2 m v2 1/2 (28)
:x( 5 + 1 - 11 -v :
m, M m, 2



T — e

— —— — ~e———

—/," ——— ‘“‘w“—“‘*‘-‘ T T— T g—

T .y

—— - Py YW W

Page 10
imtegrated over that portion of the first quadramt of the v,V plane for
which cos éi from (27) lies within the limits on cos § specified by (20).

These restrictions on v,V implied by substituting (27) in (20) take the

form, for positive or negative AE,

-1 .2 2
(v - m M v)© < Vi (29a)
2 -1 .2
vlg < (Vv + m2M v) (29v)

where, recalling Eq. (5),

v = smaller of v, ,v!

1s 1°"1
(30a)
o= v
vlg = greater of vl,vl
Of course
v! = [v2 - (2/m,)(aE)]*/2
1 1 1
(30b)
v, = [v2 + (2/m,)(aE)]1}/2
« <
Eqs. (29) imply that (28) is integrated over the portion of the first
quadrant of the v,V plane lying below the line (termed line (a))
VonMiv=v ; (31a)
2 1s’
lying above the line (termed line (b))
aMly - Vev (31v)
2 1s’
and lying above the line (termed line (c))
VemMivey . (31c)
2 1lg
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The shaded region in Fig. 1 is this allowed portion of the v,V plane.

The §-function in (28) vanishes unless

2vg =E= —-mlv'2 +>=mv (32)

vhere E is the total energy in the laboratory system. In other words,
the quantities v,V in (28) indeed must have values consistent with conserva-
tion of emergy. Eq. (32) is an ellipse in the v,V plane. Then, integrating

(28) over V, and again using (26), v

2,2 | ¥
m(2)Z5e") 2 25 , AE -
eff(v ,V,) = ———————--—- avvs(l - cos“f, + cos 8,) (33)
1°V2 32 1 17 e 1
IAE |AE| v vivs i
M)

4

integrated in the range v v < vu for which points v,V on the ellipse

z\

(32) 1ie in the shaded region of Fig. 1. Here, for given VisVp

R el R R R Y S e (3ba)

v, (v) = MH2E - wvP) )

amd, in (33), V, replaces V in the defimition of (27), i.e., now

cos §i = (2vVi)_l[v§ - vg + M"l(ml - m2)v2] (34v)

as one expects from Eqs. (17a) and (17c).

Eqs. (34) reduce (33) to a simple integral over v, yielding fimally

51 "(zlzaea)a 2 2.,.,2 2., -1 -1
(v,, 2) = —————:———-{(vl - vg)(vé - v )(vi - v, )
L|AE| v ViV,
2, 2. .,2. ,2 1,3 .3
+ (vl rv,t v+ vé )(vu - vz) -3 (vu - vz)} (35)

where vi,v; are given by (30b). The integration limits v,,v, in (33) and (35)

eff

remain to be determimed. Otherwise, (35) is the desired result for OAE .
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IV. Determination of'ﬁz,v“

Evidently vz,vu are the values of v at vhich the ellipse (32)
intersects the boundaries of the shaded region in Fig. 1. From Egs. (3lc)
and (32) one sees that the ellipse always has two real intersections with
line (c¢), of which both, or only one, or neither may lie on the boundary
of the shaded region, depending on the values of VysVpe These intersections

occur at v = VY and v = Vso given by

Yy =V TV
AE > 0, i,e., v._=1v
= / 9 1]
Ve =V vV, lg 1 (36a)
LB |
vY =vy -V,
AE § 0, i.e., vy = V) | (36v)

where vY v

-~

5 Similarly, in the first quadrant of the v,V plane lines (a)
and (b) each have at most one intersection with the ellipse, at v = v_ and

vs= v8 respectively, given by

< - K AE > 0, i.e., Vi = v]‘_ (37a)
V=2tV
v =V - V.
=« 1
AE § O, f.e., v, = v, (37p)

v =V2+Vl

Because the ellipse (32) is everywhere concave downward in the first
quadramt, it must intersect the boundary of the shaded region no more than

twice; it may not intersect the boundary of the shaded region at all. Thus,
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referring to Fig. 1, it is clear that the only possible limits of integration
in (33) are:

(1) v, = v

2 «? "u B

(11) Vy = Vs ¥, =V (38)
(iii) Vo=V Yy = Vs
(iv) V= Vs Yy = Vg

ef =
(v) no intersections, cAEFvl,va) 0

The conditions for the above cases to occur arelo (again referring to Fig.

1):

(i) v <+ . vﬁc < Vg3 O equivalently,vac SV, sV, SV

(ii1) v < v £ v"s < vbc; or equivalently, vac<\ V. s ¥V

w0
/A

o‘<

0

(14i) v._ < v , Ve &V

ac Y be
(iv) vac < vY S‘Vbc g\vs » or equivalently v 5~vac ’ vbc < vB
(v) either Ve S Vao OF Vpo SV

when Voo is the value of v at the intersection of lines (a) and (c); is

vbc
the value of v at the intersection of lines {(b) and (¢). These values are,

for positive or negative AE,

-1 -1 ,
Voo = (2my) "M(vy - v ) = (2m)) M'?l - v (Loa)

v (2m

be 3} (kov)

-1 _ -1
) M(vlg + vls) = (2m2) M(vl + v

2

Eqs. (36) and (40) imply*®

that for AE » O cases (i) - (v) of (38)
correspond to the following limits in Eq. (35), and occur under the following

circumstances:
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(1) oy, YL -V, v o= VL + v!

when

-1 1
(2m, )" [Mv! + Iml - m2|vi],§ v,

-l + ]
or (2m2) [le + Iml - m2|vlj v,

hmlm v v

2 2 1

. AE 3, [E, -E, + |[E. 2 -E —|]
g

or M2 1 2 1 \S1 2V,

and 2m,v, 3 Iml - mzlvi

= M - ' SN

(ii) v, =V, 12 V=Vt Y,

when ml ® m2 and
(2m )-llMV' - (m,-m )v.| ¢ v, ¢ (om )L My + (m.-m v, ]
2 1 1 2771y "2~ 2 1 1 21
or (2m )-lle - (m, - m,)v! |<>v' < (2m )'l[Mv + (m, -m )v!
2 1 s M- TS W AP 2 1 1 T T’V

(1i1) VRV -V s VSV, + Y,

Y

-1 N

hm.m v, le]

172
[E, -E, - |[E, =-E, =
M2 1 2 1 vi 2 v,

or 0 < AE <

(iv) V=V, -V, ,V =V

when ml < m2 and

G | o :
(2my) ™" {Mv) - (my=m vy | < v, < (2m)) 7 [Mv] + (my-m, )v, ]

-1 ' ' -1 '
or (2m,) Ile - (ma—ml)vl! $ vy g (2my) "My, + (my-m) v}

Page 1k

(L4la)

(L1v)

(b1c)

(k14)

{41e)

(k2a)

(42v)

(42e)

(43a)

(43b)

(43c)

(4ba)

(bbb)

(Lke)
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(v) °:§f(v1’v2) =0 (45a)
when 02v,$ (2m2)'1[[ml - m2|vl - Mwlj (45b)
AE)hmlmz [E, - E, + |E :2--1@: Zil] (k5¢)

o M2 1 2 1 vy 2 v,
and 2m,v, £ [my - my|v, (45a)

Eq. (41b) is obtained from the first set of conditions for case (i)

in (39), namely from Ve S Vaor Vpo £ Vs Eq. (blc) is obtained from the

equivalent set v, < v, v, < vg- Thus Eq. (41v) and (4lc) must be

equivalent statements of the same restriction on the values of Vs Vo AE,

i.e., if either of (41b), (klc) holds for given v,

both of them must hold. Indeed, the equivalence of (42b) and (42¢) can

s V. 4 AE then

be demonstratecll0 directly, without reference to their common genesis in
(39). The pair of equations (41d), (lle) is inferred from (41b); the pair
(41d), (4le) (but not (41d) alone) furnishes ﬁnother equivalent statement
of the restriction imposed by (41b) and (kle). Similarly;lo (k2v) is
equivalent to (42c); (43b) is equivalent to (L43c); (Lhb) is equivalent to
(the); (bSb) is equivalent to the pair (4Se), (Ls5d).

Eqs. (30a) and (36) - (40) show that for AE < O the limits for cases
(1) - (f) are obtained from those for AE > O simply by interchanging primed
and unprimed quantities, i.e., by interchange of K vi and of Voo vé.’ With
these interchanges, Egqs. (4la) - (4lc) immediately yield;o the limits and
equivalent conditions for case (i) vhen AE < 0; in fact the pair (Llbv),
(41lc) are invariant under these interchanges, i.e., (Llb) and (klc) are
equally valid for AE > O and AE < 0. An almost equally trivial a.rgmuen’t.lo
shows (L41d) retains the same form when AE < 0. For AE < 0, however, the

10
subsidiary condition (l4le) is implieda ™ by (41d). 1In other words, for

AE & 0 Egs. (41b), (kle) and (41d) (now without (Lle)) remain equivalent
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conditions for case (i), although the limits v,v, in case (1) are not

i0

the same for AE > 0 and AE < 0. Similarly,“ although the limits are

trivially changed by the interchange of vl,vi and of vz,vé in cases

(i1) - (iv), Egs. (42b), (42c), (4bv) and (bhc) are equally valid for
positive and negative AE. The cited interchange does notleave Eqs. (43Db)
and (45b) invariant, but does yield the correct conditions for cases (iii)
and (v) respectively when AE & 0. But the AE conditions corresponding té
(43c) and (45c) for AE < O have rather different forms-C for positive and

negative AE, which forms are best obtained from the AE & 0 analogues of

Eqs. (48) - (52) below. Of course, because v!

1 vé in (30b) must be real,

Eq. (45a) holds unless

V]

2 1l 2
m,v, & AE < 5 IV, (46)
which expresses the fact that the particle losing energy in the collision

cannot lose more than its initial kinetic energy.

Eqs. (35) and (41) - (L6) complete the specification of ceff(vl,v2),

AE
As they stand, however, Eqs. (41) - (45) are somewhat inconvenient when
one wishes to study the dependence of ozgfon vy for fixed vy, 88, e.g.,

cele man A 9 _ I T
wutuy svuaying uvae

— 1, 2 _

onization of bound electrons 2 by incident protons 1.
For this purpose it proves more convenient toeliminate first the 6(v2-v2
in (25), rather than--as previously--the 6(;l-v1)a In this event Eq. (35)

still holds, and there are again five different sets of limits (38),”6&t

now'C

« - 1772
VB = Vl + V2
AE 32 0 (47a)
|- |
VY = V2 v
= ! '
VG V2 + v
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V'Y = V2 - Vl
v‘S = v2 + Vl

AE < 0
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(47v)

Comparing Eqs. {36) and (37) with Eqs. (47), it appears that an alterna-

tive set of limits and conditions for cases (i) - (v) of (38) when AE 3 0 can

be obtained from Eqs. (41) - (45) by interchange first of primed and unprimed

particle velocities, and then by interchange of the subscripts 1 and 2, i.e.,

by interchange of vl,vé, of va,vi, and of m_,m

172"

In fact, it can be seen10

that elimination first of 6(32—v2) in (25) leads to the following set of limits

in (35), to be inserted under the following circumstances (for AE > 0):

(1)

when

or

or

(i1)

Ve =V T Vo V=V, 4V,

-1 ] '
(2ml) [Mv2 + ]ml - m2|v2] s v

“lru .
(2m1) [Mv2 + |m1 - m2|v2] gv
hmlm2 vy
AE g Z [El-E2—|E2€
= - = y! '
Vg =V m Vs V=V, + v

when m2 > nh.and

or

1l

(2m )™ My, = (myp-m I3 | & v & (2m) ™ (M, + (my-m, )v3]

( om,

-1 -1 '
)7 Mvy - (mpmy v, | g vy g (2m )T IMV) 4+ (my-my )y

5]

(48a)

(48b)

(48e)

(484)

(49a)

(4ob)

(L9c)
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= - ! ' 1
(1i1) Ve E VS - VIV, =V (50a)
' -1 - '
V2 "1
or AE » bmm,[E, - E, + |E1 ;I-- E, ;;4] (50c)
and 2m,v, > Iml - mziv1 (504)
(iv) Vo=V, -V, VTV Y, (51a)

when m2 < m1 and

—1 " ' ‘-lf ]
(em, ) |Mv2 - (m m, )vi| ¢ vl € (2m " {Mv, + (ml-mz)vzl (51b)
=1 ' - -1 ' -
or (2m1) IMV2 - (ml m2)v2| v & (2m1) [Mv2 + (m1 m2)v2] (51c)
eff -
when
[ -1 - t |
0gvy s (2m)  [|my-myfvy - Mv,] (52b)
bm m v v
12 _2 1]
or AE > Z [E, - E, + |E] v Fp v2|
(52¢)
and 2m v <& fm - m |v
A\ 22 N 7} 2171 )

Comparison of Eqs. (41) - (45) and (48) -~ (52) shows that the limits
(41a) and (50a) are identical. In other words, the present case (iii), obtained
by eliminating first the 6(52-v2) in (25), must be identical with the previous
case (i), obtained by eliminating first the 6(§1-vl). Correspondingly, the
equivalent conditions (4lb), (4le) and the pair (41d), (4le), must each be
equivalent to (50b) and to the pair (50c), (50d). These equivalences can be

provedelo

Similarly it can be provedlo that Eqs. (42) are equivalent to
Egs. (51); Eqs. (43) are equivalent to (48); Eqs. (Lbh) are equivalent to (L49);

Eqs. (45) to (52).
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Eqs. (48) - (52) pertain only when AE 2 0. As previously, however, limits

v,*V, 8nd conditions when AE ¢ O are obtainable from Eqs. (48) - (52) by

T— P —— @ —— -———

interchange of Voo v! and of v

3 2,véo In summary,

(1) VY BV, = VoW, =V b

2 2 1

when Eq. (41b); or (kle); or (kld);

-1
or O v, ¢ (2m1) [Mvé-— iml-mz!vzl
bm.m ¥
12 2
or (E, -E,+ |E, =-E, —|1< AE
w2 1 2 1 v, 2 v,
) = - = y! '
(i1} Vy Yy = ¥y V= o+ V)

when m1 > m2 and

Eq. (k2b); or (k2c); or (51b); or (5le).

‘ e vl - w! = ! '
(111) vy =V - ¥, v+ v
-1
' - - v
when 0. vy s (2m,) " [Mvy Iml mzlvl]

or Eq. (48b); or (k8e);

or (Bq. (u8a) (
i and 2m v, > Bml - mz'va_j

) = v!' - w! =
(iv) v, = Vi - Vi, v, + vy

when ml < m2 and

Eq. (Llb); or (Llhc); or (49b); or (L9e).

(v) ofg (v)s¥,) = 0

10
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-1 \
' - v
when 0L V)& (em,) [|ml malvl le]
or 0<v, < (2m )_l[lm -m v, - Mv!]
NOTLY 1 1 2''2 2
or \ Eq. (484)

and 2mlvl N iml - m25v2

Comparing Eqs. (19) and (33), it is clear that the calculation of

Gzﬁf(‘vl,‘li?) for any {central) interaction would not be essentially different

eff
AE

as in (10), the angular variation of 6'depends solely on the angle x between

from the calculation performed here of ¢ for Coulomb collisions. Whenever,

n and n° OAE(XI’XZ) defined by (9) will depend only on cos 8 and cos &'

AE 1’72

defined by (18) will be an average over all,n, ., of & oAE(oYl’xa) depending

L

But cos 8' then can be eliminated in favor of AE via (5), so that o

only on V,v and cos 8, where Egs. (17) and (20) continue to hold. Thus one
will be led to a single integral involving 94E of form{33), between upper and
lower limits vz,vu given by precisely the formulss developed in this sec'l::h::ﬁo
Similar remarks pertain tocan average over alanlé,ge-’of any function of v,V,
cos 8, where these quantities obey Egs’. (17). Of course only in special cases,
such as the Coulomb case, will the aforementioned integral from Ty to vu be |
doable in closed form. |

The fact that there are four sets of limits VoV plus the case (v)

dzgf = 0, can be interpreted, as can restrictions 1ike the pair (41d), (lle),

Thay
[%4

*
-
)

. A - P Assmm
1% ]

e T N . &
4 AL Ve dTuUULCT vV

2,9

Stabler's Eq. (15) whenm, =m
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V. Additional Details and Amplifications

To keep the argument from bogging down in details, many of the
assertions made in the previbus section were not thoroughly justified
or sufficiently discussed. This section amplifies those assertions, and

provides added deteils of their justificationms.

Eqs. (39)
The ellipse (32) has semi-axes
M 2. M 2) 1/2 (M 2 M 2)1/2
Azsl—vo ¢+ — vy 2| —v! ‘0-""-77' (533)
(éz l ml 2 m2 1 m1 2
m m m m
(™ o2, P2 2\i2 (T2, T2 _,2\1/2
B = ( ¥ V1 f T v;> (.M vi * 5V > (53b)

along v and V respectively. In other words, A is the intersection of
the ellipse (d) with the v-axis in Fig. 1; B is the intersection of the

ellipse with the V-exis.

Suppose for definiteness AE 3 O, so that vi g ML and Vig = vi > v18 =V

in Fig. 1. Then for any given AE it is possible that

B> v, (5ka)
or, it is possible that

Be<vy (5kp)

1s

A sufficient condition for (5ka) is

v, >> v (55a)

For (SLb) it suffices that



Page 22

2 2
m,v, << m,v

22 11
and m, << m, (55b)
and AE << %'mlvi

The conditions (55a) and (55b) can occur. In other words, it is possible

that the ellipse intersects the V-axis well above the intercept of line (c¢),

2

or well below the intercept of line (a). On the other hand, as AE -+ l-mvl

2
for fixed VsV the lines (a) and (b) in Fig. 1 coalesce. Thus it is
conceivable that vY and Vs both may be less than Voo OF that one or both
may be between Vae and Vb OF that both may exceed Yo

two real intersections vy,v6 with the ellipse, however, which at worst may

There always are

coincide. From (36a), this occurs only when v, = 0, and corresponds to the

2
line (c) being tangent to the ellipse.
Now because the ellipse is everywhere concave downward, it lies above

the line (¢) for v, £ v £ v, and lies below line (¢) for v« & and v, < v.

Thus if vY < Vac and Yoo < Vg then surely Voc £ v, and Voe < Vg Conversely
ir Voo € V, 80d v < Vg the ellipse is lying above the line (c¢) for

V_< v.<v,, because the lines (a) and (b) slope up and (c) slopes down.
[+

Hence the ellipse must come down to (¢) to the right of Vier Le€es Vi L Ve

similarly, the ellipse must come up to (c) at a point to the left of Veo? i.e.,

Ve ¥ Vaeo because the ellipse already lies higher than does the line (c) at

vr=v
ac

The above argument shows the two alternative statements of the condition

(1), Eq. (39), really are equivalent. Similarly, if v, < v then v, < v

8 be’ B~ "be’

and vice versa, because the ellipse lies below (c) for v 2 Vye Ir

vY € Voo LV the ellipse must intersect line (a) at a point between vY and Vs

lying above line (c), i.e., at a point to the right of vac; ir Vee < v, then
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surely vy gV &V In this fathion the conditions for (ii), Eq. (39),

ac §°

are explained and shown to be equivalent.
Now consider (iii), Eq. (39), and refer to (iii), Eq. (38). If

v, = vY and vu = Vs the ellipse is lying above the shaded area of Fig. 1

only in the range vY Vv Vs So surely Vo Ir

v and v, € V,
c\ Y 6\

be”’

v < ng then v_ & Vac$ ifv, s v then v, V. On the other hand,

§ S Ypeo 8 S Vpeo

€ v, . does not guarantee case (iii), because these condi-

B b

tions are compatable with both vY and v6w$~vhc, or with both

vy and Vs S Voot In other words, without some additional prescription

on v. or v, the conditions v_«g v
Y § =

Vae € vYg Ve € Voo This is the reason there is but one condition

for case (iii), Eq. (39), instead of two equivalent conditions as in

ac’ VB < V. are not equivalent to

cases (i) and (ii). The conditions for cases (iv) and (v) are understood
similarly.
It is worth wh;le to show that case (v) really can occur. In

fact, I shall show v,

be < vY can occur and can be  consistent with

V¥ Vaes vs.s Voe? thus illustrating the assertion that these conditions
on v_, v, are not sufficient to guarantee case (iii) holds. Using
Eq. (31c) and (40b), at v = Vie (and AE30), the value of V is
m
= 2 M 0 i ‘
Ve ® 1T HEm 1t Y1) = (Vi) (56)

2

If the V-intercept B of (53b) is less than this V. o» then the ellipse

surely lies below line (c) for v < v

be’ and so v,

be surely is less than



the first intersection v of the ellipse with line (¢). Boa

sufficient condition for Vbc < vY is

m 2 m, 2 ’ 2 ¢
1 v+ 2 ¥ 1llv. -v (57)
Eie 2<r<11>

Eq. (57) is satisfied when v, = O, v! = 0 (its smallest value), and

2 1
m
1_-1
M< T, i.e., 3ml< u,
(58)
Hence v, = 4 vy corresponding to case (v) of Egs. (38) and (39) occurs,
The conditions v_ < Vac® vB < Vpe 2T
v' - v' M (v
2m 1°” (59a)
v' + v‘ < M
2m261 + l (591)?

' = éAE\ b 2 1 2
V2 (;{2-—) = (;—2- 'é' mlvl (:_11)%’1 ( 60 )
2

Using (60), Eqs. (59) will be satisfied if

[

2 2 ‘ (61a)

/_\
B| B
ind
A
E’lz
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i.e., if
, 2
)&mlmz < (ml + m2> (61b)

wvhich also holds because

'anl - mz\z (61c)

So Eqs. (59) can be satisfied, and yet Vpe can be - Ve

Egs. (L1

For AE30, the conditions v v

y < Yac, Ybe ¢ Vs ©F (1), Eq. (39), are:

=1
v, -V 2m MQ - v')
1- V%2 s( 2) 1~ N (628)
and
2m-1Mv +vilgv, + v, .
2 1IN 1T (62b)
or
(\mz - "‘1)”1 + Mvy < amyv, (63a)
and
(ml - me)v + Mv 2m2v (63b)

A

Eqgs, (63a) and (63b) are both encompassed in the single condition (k1v).
The other set of conditions in (i), Eq. (39), namely v < Vo
ac

Vpe § Vg» ere:
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(2mg) s - vi)evs < v | (6la)
and

(zmz) (v + v >gvé + vy (64b)
or

Mv, +(m2 - m]7> < mV3 (65a)
and

Mv) + (ml - m2> 1 € 2myvy (650b)

Eqs. (65) are both encompassed in the single condition (4lc).

Squaring both sides of (Llb) yields

2,2 2 2 2 »
M V)T <ml - m2) v, o+ 2M|m1 - ‘v v! 1< hm2v2 (66a)
~e._2 IARY
ULHI-L-I-GL -I-J [y Huo \ "-I.\- I J .l.c.l.un
2 - :

Thus Eqs. (66a) and (66b) are identical if
2 o\ .2 22 2 B2 2 2
R R (ml mz)gvl "2 72 (61a)
Using (30b), Eq. (6Ta) requires

2( 2 2aE \2.2,22 22 2(2 288\ , 2/ 2 24E
M <"1 m )* (ml mz) vithmov, = MOV +(”‘1‘“‘2) <"1" ml)‘hmz(vz' m, >(67b)
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i.e.,
\2
2 -0%)
m, m, B2 (68)

which is true. Conversely, starting with the obviously true (68) one
can derive (6Tb)‘and (67a), and so one can conclude that if (66a)
holds then (66b) holds, and vice versa. But taking the square root
of both sides, Eq. (66a) implies |

My + lml - mzlvl

¢ MY

which is identical with (4lb) because both Mvi and Iml - m2|vl are in-

trinsically positive. This argument shows Eq. (66a) implies Eq. (41b).
Similarly, Eq. (66b) implies Eq. (4lc). Therefore it has been
proved that Eqs. (41b) and (Llc) are equivalent.

Nexi write (#ib) in tue form

.

1722 1 - (69)
sz'g = M2/72 - -2-':‘-3'-‘-\< lun‘?v2 +/m --m\zv2 - im |m -m. |v.v
1 t 1 m - 22 1 2) | 2| 1 2| 172 (70a)
or
bm.m vo hmgv2 + um_ | i v.v. € M 28E
WMpVy “HmpVp Y MMy my - My ViV y (T0)

Eq. (70b) becomes




Page 28

hmlm2
AE3 2 1 v, - lm v2 + ;m v.V, - lm v,V
M 2 M1 T 2%Y2 V12 T 221 "2 ‘
(11)
Hence, since E, = m vel//2 E,=2m vz//’ it has been shown that
’ 1 11 *F2 7 Tele/ 2, wn Laa
Eq. (41b) implies the condition on AE in (41d). Conversely, starting
with (71) one can infer (70b) and (70a). Thus, taking the square
root of both sides of (T70a), Eq. (71) implies
' -— -
M) < |2myv, - [mp-my|vy (72)
Eq. (72) is not immediately equivalent to (69), however. To
obtain Eq. (69), it is necessary to impose the additional condi-
tion that
am,v, »im.-m,| Vv
2V2 2|M M| V1 (13)

Therafarae i+ hoa haan chAwnm +that Fa. (_h'lﬁ) will nnt Af 1teanls

imply Eq. (41b), but that the pair of conditions (Lld), (Lle) does
imply (L41b). On the other hand, starting with (41b) one obtains (69)
from which one knows (73) must hold, because Mvi is intrinsiecally
positive. Consequently, because it already has been proved that
(41v) implies_(h;d), Eq. (41b) both implies and is implied by the
pair of conditions (41d), (ble), i. e., Eq. (41b) and the pair

(bld), (4le) are equivalent. Note that (l4le) is not encompassed

in (41d); when v, = 0, (Lle) fails, but (4L1ld) will be satisfied if

2

OE is as large as E, its maximum allowed value.
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Eqs. (L2)

The conditions Ve ¢ Vae < V6 < Voo of (ii), Eq. (39), are

(AE20):
v.,~v, < (2m )-lM(v -v9 €V, +v, ¢ (2nm )'lM(v +v!)
1 °2° 2 11 1 2 2 11
These three inequalities yield, in turn
‘ - |
le - (ml m2)vl % 2m2v2

-] -) %
(ml m2)v1 le < emyv,

5 [ -
2m2v2 < Mv) + (ml m2)vl

Each of (75a), (75b), (75c) must be satisfied. Egqs. (75a) and

(75b) cean be combined into
IMVJ'. - (ml-mg)vll €2m,v,
! |

which implies both (75a) and (75b). Thus the first set of conditions
for case (1i), Eq. (39), reduce to (42b). So far there has been

no condition that m1;>m2° But if m1<m2, the left side of the inequality
(42b) would exceed the right side, i.e., Eq. (42b) could not

possibly be satisfied. Therefore the limits v, = v_,

of case (ii), Eq. (38), occur only vhen m>m, and ¥

inequality (42b).

(%)

(75a)

(75v)

(75¢)

s _n

viou
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The conditions v. < v , v

ac of (ii), Eq. (39), are

B Sv't:c

(2m2)-1 M(vl-vi) < vi-v!

2 1
da
= (76)
v'+v' (2m)lM(v *v)
vwhich immediately reduce to (42c), Note that when AE>0
- ]
Mv, > (ml mz)vl (77)
because v, > vi and M 3 (ml-m ). Hence the absolute value sign
can be removed in (42c). However, retaining the absolute value
sign keeps the forms of (42b) and (k2c) as alike as possible, which
proves convenient when the situation AE<O is considered (see below).
To show the equivalence of Eqs. (42b) and (42c), proceed as
follows,
.. avn _ .8 e a ... . _maas__ 3.. SV N ___a 2V~
- & weld was NS & ‘5“" ‘“U‘m‘ LA T LY ] N Timw g kA WA \ hn £ S 5% Yi 1
22 2 2.2 :
hmav2 g szi + (ml-me) v+ 2M(m )vl 1
(78a)
2 - ' - '
m P M2v + (m m,, ) + 2M(m ma)vlvl (78b)

Eqs. (78a) and (78b) are identical if (67a) holds, after which
one follows on to the obviously true (68), just as before. Con-
versely, because (67a) holds, either of (78a) or (78b) implies the

other. But (78a) and (78b) imply, respectively,
emyv, € lu.vi + (ml'ma)vl‘

2m ) € |Mv + (m) m)v|
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from which the absolute value  signs can' be removed because

all terms under the absolute value signs- are positive (with m >m ).
Thus the equivalence of the right inequalities-in (L2b) and (L42e¢)
is proved. Similarly, starting from (6Ta), one infers that

each of

2 22 , 22
'y v * (my-my)"v) - 2M(my-my)vov) & bmpvy

Mevi + (ml-mz)avia - 2M(m1-m2)v1vi < hmgvéz
imply the other. But (79a) and (79b) imply, respectively,

IMVi - (“1“‘2)"1l € 2myv,

-m, )v!

IM"l' (m, -m, )vg

< gy,

Eqs. (80a) and (80b) are the left inequalities of Egqs. (42b) and
(L2g) respectively.

This completes the proof that (42b) and (42c) are equivalent.
A condition on AE-like (4ld) can be derived in this case (ii),
but because of the*fact-that~va~1s~bounded‘both'rrom‘above and from
below in this present case (ii), the AE condition now is rather more

awkvard then was (l4ld).

Egs. (43)

The conditions v, ¢ Ver Vs € e of (iii), Eq. (39),are (AEy0):

(79a)

(79v)

(80a)

(80v)
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-1 .
(2m2) M(vl-vl)1s v =V, (81a)
and
v, +v,.< (&m )'l M(v, +v?)
1l 2 2 11 (81b)
which become, respectively,
, . _
2myvas My + (‘}‘2 m vy - (82a)
and
9 -]
am,v,§ Mv] + (m:L ma,)vl (82b)

The smaller of the right sides of (82a) and (82b) is

Mol - fyomp|vy
Thus if (43b) holds, both (82a) and (82b) hold. In other words,
(43b) is the condition for case (iii), Egs. (39).
Writing (430 1n tne rorm
mvy + |“’1"‘2|"'1.~‘ Mvy (83a)
and squaring both sides leads to (43c), in the same fashion as
(41b) led to (Tl). Conversely, working back from (43c) one cen

infer
-— ) - '
I2m2v2 * l’“l - IV), < Mvy (83b)

gut. (83b) is equivalent to (83a), because the terms under the
absolute value sign in-(83b) are intrinsicallypositive. Thus

(43¢) alone is equivalent to (43b); a sudbsidiary condition like
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(4le) is not needed in this case.

Eas. (4b) and (45)

Eqs. (Lub) and (Lbkc) arg"deduced,*ané their equivalence
established, in essentially the'same'manner-as-in the above
amplification of Eqs. (h2).

The condition for case (v), Eq. (39) is either Vg V. OF

Voo € vy. These redﬁce,‘respectively, to:

-] - ]
2myv, & (my-my)v, - Mv)

(8ka)

or

2myv, € (mp=my )vy - Mvj ‘ (8b)
The larger of the right sides of (84a) and (8L4b) is

oyng v - 9
Thus if (45b) holds, either (8La) or (84b) will hold. Thus (LSb)
is the condition for case (v), Eq. (38), i. e., is the condition
ror (45a) to hold.

Write Eq. (45b) in the form
MV < |m1-m2'vl - 2m,v, ’(85)

and compare with Eq. (69). Then it is-clear squaring both
gsides of (85) will lcad to (71), i.e., to the AE condition of

(41a) which is identical with the AE gondition of (45c). Conversely,
grom this AE condition one can again infer (72), which with the

new additional condition
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|my-my|vy 2 2myv, (86)
becomes (85). Therewith the equivalence of (LS5b) and the pair of

conditions (ui5¢c), (45d) is demonstrated. Also, letting now E, = O,

1
ones sees (45d) is not encompsssed in (kSc).

Eqs. (45b) and the pair (45c), (45d)-are general conditions

for dz;f (vl,va) to vanish. Of course, therefore, figs. (45b) - (L5d)

are satisfied (as can be verified) vhen v, = 0, vi‘s‘Og 3m1 < mp,
the particular- -illustrative circumstances under which cigf

was previously established, by showing that in these particular

= 0

eircumstances Eg, (57) holds.

Relations Corresponding to Eqs. (41) = (45) when AEgO

The limits and the conditions for cases (i) - (v), Eqs. (38) -

V.
e’ "be’

Evidently (36b) and (37b) are obtained from (36a) and (37a) respectively

(39), depend only on the values of v_, Vgs Vy» Vo Vg

] ] L] t
by writing vl for vl, vl for vl, v2 for v2, v2 for v2.

is invariant under fhiS'interchange. Eq. (40a) reads

Eq. (4ob)

v = (2m,)"t M(v,—v!) AE20
and

v, = (2m, -1 M{v1-v)) AE<O

recalling (30b). So Vae for AE¢O also is obtained from Vae for

AE30 by interchange of vl,v' and of Vs ¥ Thus for AESO the limits

]
1l 2°
and inequalities following directly from Eqs: (38) and (39) are

immediately obtained from-making this interchange in those of
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Eqs. (41) - (45) which for AE30 folloved directly from (38) - (39).

Specifically, then, the limits in cases (i) - (iv) are

(1) v, T Ve Vu= vy 4wy
= a N 1
(ii) vb VouVys vua viv vy (87)
1 !
(111) VIV Ve V= v+ vy
= v' - !
(iv) VSISV V=V, t Y

and of course (L5a) continues to state (without replacing v, by v!',

or v, by vé) the value of ozéf when case (v) occurs with AE<O.
Interchange of v,, vi and of v,,v) converts (41b) to (kle) and

vice versa. Examining Eqs. (66a)-(68) it is seen that they hold for

AE<O just as well as for AE30. So (4lb) and (klc), the presumably

equivalent conditions inferred from (i) of Eq. (39) for AEcO, are proved

equivalent precisely as in the circumstance AE30. Similarly, Eqs. (69)-

Lowm - . - - R o - e aa . Ry ° ZV.a «\ A NS \
VI MY MUY UGYTHMM Vi VMS QA Vi Qg DWW VLGV VS MOAA \ThW g \Tawy

is equivalent to Eq. (4lb) for AE<O as well as for AE30. However,

when AE¢O, the condition (lle) is encompessed in (41d), i.e., for

AR 3+ 4
LaSv AV 4

(]
3]
Q

tion of this assertion goes as follows:

If AE¢O satisfies (k1d), then surely

5, 55 + |52 - £
2777 Thgs ™ T (88a)

In terms of the velocities, Eq. (88a) is

2 2
mv, - m,v, - Iml - mzlvlv2 >0 (88b)
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f.e.,
v2 - m v ~(m, -m.)v.v, > O >m
MoVp = BVy ~imy) = mIyv, 2 b
v2 -mve ~-(m.- m )v.v > 0 m, <m ’
MoVp = ByVy ~Wm BNV, 2 1 < By
These equations factor into
(myv, -~ myvy) (v, +vy) » 0 m > m,
(myvy + myvy) (vy = v)) 3 0 m <m,
So one can comclude
Bvp > ¥y Comom,
Vo2V m < m,
Now consider (lle), which is
zm2v2 > (ml - m2)vl wnen ml > m2
2myvp ¥ (my = my)vy vhen . omy <m,

But (88f) obviously follows ﬁ"om (88a), (88g) follows from (88e),

remembering m, >m.

It has been proved, therefore, that when AEO Eqs. (L1b), (klc),

and (414} alone--without (Lle)e—ar

S 2022 -~ = ~ " -

(1]
o
2
2
1Y
4
(]
=
W
]
o+
[¢]

Of course, with AE<O one must take the limits for case (i) from (87),

not from (4la).

(88c)

(884)

(88e)

(88¢)

(88g)
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One sees similarly that the pair of Eqs. (42b) and (L2c)
are invariant under interchange of v vi and of Vo5 vé (the reason
the absolute value sign in (hzc)kwas-retained;~~COrrgspondingly, the
argument that Eqs: (k2b) and-(k2c)-are-equivalent remains valid
for AEgO.

When AE<O, the condition for case (iii) is
-1 .
(i1i) 0< vy« (2m)™" [Mv, - lml - m2|v1] (89a)

Because {(li3b) is not-one-of-a-pair of inequalities, as was the
situation for (L1b), (klc) and for (42b), (h2c), one sees that the
condition for case (iii), AE<O is not the same as for case (iii),
AE30. Moreover it is not a matter of my having overlooked the

second inequality forming a pair with- (43b); Eq. (89a) for AE30
really is not equivalent to (43b). For instance, with AE30, consider

- - 27N TR Y

LVUE CLICUmSLauce vy = v, vy = e iuTn, USCallilag \UV/s Sye \uya,
i

is satisfied if

3
[m) . «M .
Km2/ Y1 2m2'1

which is identical with Eq. (6la), i.e., is always satisfied, as
was seen from (6lc). So (89a) is satisfied when v, =0, vi = 0,
On the other hand, (43b) is not, because with vi = 0 the right

side of (43b) is negative.
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The analogue of (43c) when AE¢O is (LB4) 91n 6ti1e"&§ words (L3e) still,

except ‘of course that now AE<O) provided also
vy 2 |my - mplv, (89%)

The derivation of (89b) is explained below, under the -heading, "Rélations

Corresponding to Eqs. (48) - (52) when AEg0."

Eqs. (L4b) and (kbc), like (42b) and (42c), form an equivalent
reir invariant under interchange or.v1§ vi’and°of-v2,vé, and therefore
equally valid for positive and negative AE. The condition for

case (v), ngf(vl,vz) = 0, when AE¢0 is after interchanging in (45b)

=1
(v) 0¢ v, s (2m) [lml - m2|Vi - Mv,] (89¢)
The analogue of (45c), like the analogue of (L3c) is derived below.
It turns out that for AEgO, the condition (89c) is equivalent to the
assertion that (4Ed) again holds but that now (89b) fails, i.e., in
case (v) instead of (89b)

vy € |my - my|v, (89b)

Eq. (89d) is derived below under the same heading as (89b).

mv, > lml - m,2|v‘2 (894)
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Eqs. (L7)

To eliminate first 6(?2 - v2) in (25), use (2kb) rather than

(as previously) (2ka) to express cos 8 in terms of v,V. Then

Eq. (27) is replaced by

cos '6'1 = (2mlM'1\rV)'l (v + mlM'zvz- v:) (90a)
and in (26)
at w)
ag. Mo M w
dx ~ v
dcos [} 2
8=, (50b)

Thus (28) now is replaced by ..

2.2 e
eff n(“1 ™ ) L AE
(vl,v ) = -———-—MEP 55 |av|avey ( (1-co . + vV o8 31)

-1
2m M .
)(6[{\!2 + mgM‘av2 + —a'fiﬂ (V2 + B§M-2V2 - vg)}k - v, ]1(91a)
2m1M vV 1

The § function in (9la) is 6(91 - vl),- reexpressed in terms of

v,V using (2ka) and (90a). This 6§ function becomes

2
2 m,v m
5 RMV i M- v2)15 ] v‘]
t\ =, ] m, 2 1] (

e

\O
[ Ed
N

The restrictions in v,V implied by substituting (90a) in (20)

take the form



2, -2 2 2
et mM v v,
R v2+_;__l -2 .,
¥ om, M v
2 v a? W2 - 2
1 < 2 AE
13 =) € v
2m M vV H
In other words
-1 .2 2
(v - m M v)S g v,
2 . 2AE ,2 1.2
2t h, T V2 € (V¢ m M)
2 1 .2
v, € (v + mM Y
<1 ,2 2  2AE ,2
(V-md )™ ¢ e = v

AE30

AEg0

AE<O

Eas. (93a) and (93b). for AE>0 and AE<£0. are summarized bv

where

= gmaller of vz,vé

[ ]
28 =  larger of VosVp
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(92a)

(92v)

(93a)

(93b)

Eqs. (94) imply that (91la) is integrated over the portion of the

first quadrent of the v,V plan lying below the line [again termed (a))
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-1 _
V-mMy = v, (96a)

lying above the line [again termed (b)]

-1
mMTy -V o= v, ' (96b)

VemMiy = v

1

l and lying above the line [again termed (c)]
{ 2g - (96c)

The § function (91b) vanishes unless (32) holds. Integrating over

V, the ¢ function contribution from (91b) now involves

2
.s.(miﬁ‘i. _“‘_2,,2)” .
ax av 2 v
oM ] vey, mv (57)

with V,(v) still given by (3ka). Therefore, in Eqs. (91), after

integrating over V, the factors under the integral sign multiplying

the terms in cossi become
/ :
| : n M vy My A
: 1 i . (98)

r Moreover, substituting (34a) in (90a), one sees that Eq. (3kb)
continues to give cos 51 in terms of VysVpsV and Vi;~aga1n as one
expects.,

|

|

} It follows that Eqs. (33) and (35) still hold when one
r eliminates first the 6(@2 - v2) in (25), but that the limits
|

|

b




Vs V, DOV are determined by the intersections' of lines (96a),

(96b) and (96c) with each other and with the ellipse (32).

Moreover, let v_, ve, VY’ Vs VaesVne

(e.g., Vac is value of v at the intersection of lines (a) and

“be detined'as previously

(c), v, is the smaller v at the two-intersections made by line (c)
with the ellipse), so that Eqs. (38) and (39) continue to specify
the limits v,, v, to be inserted in (35). :‘Then one readily sees
the values of v_, Vgs Vy» Vg BYE a8 quoted in Eqs. (4T).

In particuldr, suppose AE20, so that

Vog = V2 v25 = vé (99)
Hence, substituting (96a) in (32),

Biva + 0?4 w® = el v 3

2
m m.m
(M-ma)vg + —:-L-+—l——2->v2 +omvy = mve

M M 12 11
vg + v2 + 2v.v = v?
2 2
(v+v)" = v] (100)
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of vhich, by definition, v_ is the root which possibly (though

not necessarily) can lie in the first duadrant. "Evidently, therefore
v = Vv, -V

as in (4Ta).

The other results in (4Ta) and (47b) are derived similarly.
A more simple argument is to note that when-AE30, Eq. (3la) converts
to Eq. (96a) if first the prime is removed from v', and then the
subscripts 1, 2 are interchanged-in V350 and~in~vi,vé; when
AEZ0, Eq. (3la) converts to Eq. (96a) if first the prime is added to
vis
operations convert Eq. (31b) to Eq. (96b), for AE30 and AEgO

and then the subscripts 1, 2 are interchanged. The same

Eq. (31lc) is converted to (96c) by interchange of 1, 2 after adding
the prime to vi(AE;O), or dropping the prime from vi(AEsO). In
other words, Eqs. (3la), (31b), (3lc) are converted to the
corresponding Eqs. (96a), (96b), (96¢) by-first: interchanging
vysVs with their corresponding primed quantities vi;vé, and then
interchanging all subscripts 1, 2. But, because of the last
equality in Eq. (32), these interchanges-leave Eq. (32) unaltered.
So Eqs. (47) must be obtainable from Eqs: (36) and (37) by first
interchanging primed and unprimed particle velocities, and then by

interchange of subscripts 1, 2. Correspondingly, from Eqs. (40)

the intersections v

ac’ v

now are
be
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-1 '
Vae = (2m) Ml"e - "2=| e (101a)
Vpe = (2m)T Mlvy +v,) (101b)

as can be verified directly from Egs. (96).

Eqs. (48)

With AE»D, using Eq. (4Ta), case (i) of Eq. (38) now

corresponds to the limits

L « 1l 2
a T Vg TN * v

es in Eqs. (48a), and consistent with the interchange rules which
heve been cited. Similarly, Eqs. (klb), (hlc):yield the corres-
ponding criteria (48b), (48c) for the occurrence of the limits
(48a). Eq. (48d) is obtained from (48c) by exactly the same
argument, Eqs. (69)~(T71), as was used to obtain'(BSd) from (41b).
Because (48¢c) differs from (klb) by the-interchange only of sub-
scripts 1, 2 (primed and unprimed quantities are not interchanged
in going from (41b) to (4Bc)!) , the corresponding interchange in
(414) should yield the AE condition equivalent to (48¢).

There is the proviso, however, thai in getting (41d) from {4ib),

AE enters through

v'2 = v2 - -2_A—E-
1 1 4



whereas, in proceeding from (48¢), AE enters through

2 2 2AE
2 2 m.,
-4

So the presently desired analogue of (41d) is obtained not
merely by interchanging subscripts 1, 2, dbut' also by changing

the sign of AE. Performing these operations on (41d) yields

-AE 3 km, m,, ";2 -E ¢

o V. v
| % Ez_l, - El_g H::]
M2 v, v, o

which is the AE condition (48d).
To check the correctness of this argument, I will obtain

(102) directly from (48c), Write (iB8c) in the form

Mvp & 2mlvl - lml - m.zlv2

Squaring both sides of (103) yields

Moy

v

2 2 2 2 2
> = Mz("g + 21%?) § bmy7vy o+ (m) - my)v - l""1“"’1 = B
2

2AE 22 2
Mo _;;.‘ bm, “v] - bmmov, = hmllml - m2|v1v2

;. 2 -1_= 2 -1; | - I-n
tE s T3 3™V - 3™ 2 M"Y T 12|

Eq. (104) is the AE condition (48d). Conversely, working back

Page 145

(102)

£1n2)\

(104)
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from (104), one gets

' -
My € (2mv; = |my - m,|v, (105)

which is the analogue of (72}, So to make (104) equivalent to

(103) requires the extra condition
2mv, % |my - my|v, (106)

which is the analogue of (ile).

The condition (106) is not needed as-a supplement to (48a),
however, because the AE30 Eq. (106) is implied by (484), just as
(kle) was implied by (L4ld) when AE<0. The argument follows the

lines of Eqs. (88a) - (88g). If (48d) holds and AE20, then

- 1.. (107a)

B
<
—d
l\)B
<
V]
1
B
\M]
B
W
-T
e
q
n
N%
o
~
I.J
Q
-3
[
g
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These factor into

(mlv1 - m2v2) (vl + v2) > 0 m, > m,
(mlvl + m, v2) (vl - v2) > 0 m >m,
yielding
™Y > B By > M (1074)
1.7 7% > W (107e)
Eq. (106) is
amv) » (my = m)v, vhen my > my (2072)
myvy > (m) = m, Jv, when R (107g)

Eq. (107d4) implies (107f); Eq. (107e) implies (107g).

It has been proved, therefore, that when AE>0, Eqs. (L48b),
(48c), and (48d) are equivalent conditions for use of the limits
(48a). But these limits are the same-as (43a), Thus the
conditions for (43a) must be the same as for (48a). Indeed,

(48a) is identical with (43ec). So, when AE30, the conditions
(430), (43c), (4Bb) and (4Bc) each all are equivalent, remembering
(43v), (43c), (4BD) and (48c) each already have been proved

equivalent to (484).
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! Egs. (h9)

The interchange of vl,fé, of vk,vi and of m ,m, in Egs. (42)
yields Eqs. (49). But now the limits in Eq. (49a), presently
case (ii), are identical with the limits in (Lla), previously
termed case (iv). Eqs. (4k) and (49) both apply only when
m, € m,, MOreover. So it must be possible to show the condi-
tion (4kb), (kke), (49b), and (49c) all are equivalent.

To show the equivalence of these conditions, note first
that Eqs. (79)-(79) have proved the left inequalities in Eqs. (42b),
(42¢) are equivalent, as are the right inequalities in (L2b), (L42c).

So the left (and right) inequalities in (Lkb) and (l4kc) must

} be equivalent; similarly the left (and right) inequalities
L in (49b) and (49c) are equivalent.  So it is sufticient to show:
(a) one of the right inequalities in (hib) and (klc) is equivalent
to one of the left inequalities in (49b), (49¢); (b) one of the
left inequalities in (LUb), (Llc) is equivalent to one of the
right inequalities in (49b), (L9e).

I shall compare the right inequality in (L4b) with the left

inequality in (49c). These take the respective forms
?
v, = (my = mylvy « Mv) (108a)

Mv! § 2m v, + (m2 - ml)vz

2 171 (108b)
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because the absolute value sign can be removed from (49c) when

vé >»v,, i.e., when AE>0,

29
Squaring (108e)

2 2 2
hmzv2 + (m2 - ml) v

2 ' 2 2 2AE
- hmg(m2 - ml)vlv2 & szi = M2<;l - —;;)

1
2 2AE 2 22
M n, £ hmlmzvl - hmzva + hmg(me - ml)vlv2
bm. m
12 2 2
2AE & M2 (m m V) = myv, + (m ml) (209)

Squaring (108b)

2 2 2AE 2.2 2.2
1} ¢ — ) h +* = h'4 +
M2V2 = M2<V2 )\ mlvl (m2 ml) 2 hml(m -m )Vlvz

i - hm m2v2 + hml(m - m )vlv2

D—‘l\)

which becomes identical with (109).

Now starting from (109) one works back to (108b), without

4 Y

subsidiary conditions, i.e., conditions (109) and {i08b) are

equivalent. Starting from (109) one also works back to

2mv, = (m

- '
2V2 p =My & My

1 : (110a)
which is equivalent to (108a) only if

om.v, > (m,6 - ml)v

2°2 2 1 (110v)
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So either right inequality in (44) is equivalent to (109)
supplemented by (110b); either left inequality in (L9) is
equivalent to (109) above.

Next compare the left inequality in (lklc) with the right

inequality in (49b). These take the respective forms

A - P
Mv. & 2myv! + (m2 ml)vl

1 22 (111a)
| - ]
2m)v] = (my =m vy ¢ Mv, (111b)
because the absolute value sign can be removed from (hlc)
when AE>0. Eq. (11la) yields
22 _ 2 . 28E) 2 _ ,2 _ .
MV = Mz(vl +-1%: < hm vy© o+ (m2 ml)vl + hm2(m2 ml)vlv2
N N n [} o X . R
M ——1' < quVé - ﬂmlmevi - 4m2\m2 - ml ;vlvz
RAE hmlmz[m v'2 nvi2 4 (m, - m_ )vivi]
M2 R R § 2 177172 (112a)

Eq. (111b) yields

hmivia + (m2 - ml)zvé2 - hml(m ml)v v' £ sz = M2<}é2 - 288
M2 2AE

a, hmlm v' - hmivia + hml(m -m Wwiv

12

which becomes identical with (112).
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Starting from (112), one works dack to (11la); starting

from {(112) one also works back to

1o - )
|amyvy = (my - mdvi| s Mv, (113a)

which is equivalent to (111b) only if

2m v - (my, -m)vy > 0 . (113b)

So either left inequality in (LL) is equivalent to (112) alone;
either right inequality in (49) is equivalent to (112) supplemented by
(113b).

The above results, together with the results stated following

Eq. (110b), may be summarized as follows. The conditions (109)

—_——— e —— — ———

... PeaaAnN _a. .t

s I220) =3- f370W) . ava annivalant. ta the entire set of
inequalities (4k); the conditions (109) plus (112) plus (113b)
are equivalent to:the-entire set~of.ineqnalities (49). In
addition, (109) alone is equivalent to the left inequality in (49).
I next show that (109) plus (112) plus (110b) also imply the right
inequality in (L49).

Egs. (109), (112) and (110b) imply the inequalities (4k).
The left inequality (kLlc). is

. L
Mv, - (m2 - ml)v1 € om,v)
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i.e.,

] 1]
le - 2m2v2 < (m2 = m1)v1

2
M(m2 - ml)vl - 2!:1.2(11:.2 « mIBV% < (m2 - ml) vi

M(m2 - ml)vl - 2m2(m2,= ml)vé g szi - hmlmavi

[ = 1] 9 o -
km. m_v 2m2(m2 m )ve < szl M(m2 m

17271 1 )v

1°°1

=1 LI - 9 =1 - -
M7 (emv] - (my - mydvpl & (2my) [Mv) -(my omdvy) (11ka)
But from the left inequality (44d), recalling Eqs. (75),
- (m -
Mvj - (my -mylv; & 2mpv, (114b)
Using (11kb) in (1lka),
mt [om,v! - (m, - m )vl] ¢ v
11 o ~ MVl & Yy
v - '
2mvi & Mvy + (my -m))v) (11ke)

Eq. (11kc) is the right inequality in (49b), which already is
known to be equivalent to the right inequality (49c).

This proves (109), (112), and (110b), imply the entire set of
inequalities (49), which in turn imply the set (109), (112) and (113b).
On the other hand, I now show (109), (112) and (113b) imply the set
(109), (112) and (110b). Egs. (109}, (112) and (113d) are known to

imply the entire set (49) plus the left inequality (k). From (L49c)




Mv) - (m2 - mi)v2 § vy
Mvj - 2mvy & (my - m)v,
M, - m )v! =20 (m, -m,)v, ¢ (m, = )2v = My, - bmmyv
2 =™V 1\ =By Yy 2 "™/ Y 2 = MYy
hmlmzv2 - 2m1(m2 - ml)vl £ M2v2 - M(m2 - ml)vé
-1 : =1
M [2m2v2 - (ml - mz)vl] P (2m1) [MV2 - (m2 - nl)Vé]
So, using the left inequality (49b)

-1 .
M [2m2v2 - (ml - m2)v1] ¢V

v

2m. v, & Mv! + (m 1

3 1 p ~ ™

2

which is the right inequality (Lkbv).

Therefore (109), (112) and (113b) imply the entire set (L)

- 2==3-- £3AnY  [110) and (110K) Thie nraves (100).

Wetuwar @wee wwma we e —y N e e &

~

(112) and (110b) are equivalent to each other, and so the entire

set (L4l4) are equivalent to the entire set (49),

Egs. (50)

The limits (50a) coincide with (4la)., Therefore (50b) must be
equivalent to (41b) or (hlc). The direct proof of the equivalence

ie as follows. Write (50b) and (4lec) in the forms, respectively

11

om. v! + Iml'a m2|v§ $ Mv,

My, § 2mvi - Im1 - malvi

(115a)

(115v)
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Squaring (115a)
2 _,2 2,2 s bt 2
hml vi + (ml - m2) vé + hmllml - 2|vlv2 < M2v2

)2 2

2 2 2 .2
lmrl1|""1 lv V2 ‘Mz"z - bl - - m)v, (115¢)

Squaring (115b)

~ szi < hmgvéz + (m1 - ma)zvi2 Y lml - 2'v v!
hmz‘ml - 2|v1 3 € hm ' + (my = m, )2v°§ - szi (1154)
So (115c) is identical with (1154) if

mp vy - bmivi® - (my = m))*vg®) = m Dhdes® ¢ (my - mp)PiPo wE] (115e)

\
|
|
* i.e. if,

w [hw m 1172 - M2 —2—-A—E— - hm2v2 + hﬂLz ?“A"E"]
z L 2 < m2 P N e Aul
2 2 2AE
m [l‘mz 2 = bmymyv) - (m) - m) —:;I]

Conversely, working back from the identity (115e), one infers that

(1154) and (115c) are equivalent. Eq. (115c) implies (115a);

Eq. (1154) implies

le

<

(116a)

om vy - |m1
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Thus (4le) is equivalent to (50b) plus

om, vl 3 lml - m2'vi

2'2 (116b)
However, (116b) is implied by (50b), as follows:
vy & Mvy - |my - my|vy
2ml|m1 - mzlvi < M|ml - m2|v2 - (ml - m2)2vé
2ml‘m1 - mzlvi < M|m1 - m2|v2 =lM2v5 + hmlmzv2
Mvy - M|m, - 2|v2 s bmpmyvy - 2w |my - mp|vy
M[Mv) - Im - 2|v ]« 2m [2myv |m - 2|v ] (116¢)

" But the left side of (116c) necessarily is positive for AE30. So

the right side of (116c) is positive, i.e., (116b) holds.

This completes the proof that (50b) is equivalent to (41b) or
(4lc). The pair of conglitions'(SOc)9 (504) now is simply a rewrite
of the pair (41d), (bkle); there is no simple way to deduce this

AE condition directly from (S0b).

Egs. (51) = (52)

—~~

ko)
i

[»%

Eqs. (51) bear the same relation to Bgs. {(%2) as id to
(44), there is no need to discuss them further. Eq. (52b) must be
equivalent to (45b)., The proof of this equivalence resembles the

proof of the equivalence of (L49) and (Ll).




i
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Eq. (52b) takes the form

2m v + Mv, 'ml - 2Iv'

1°1 (117a)
Eq. (45b) is
' L
mpvy + M & |my - mp|v (117b)
Squaring (117a)
2 2. .22 . 2,2
bmy v1° + My, + hmlelv2 & (m1 m,)v
2 2 2
‘o - \7 -
hmlel s X (m m, ) vy M2v | (117¢)
Squaring (117b)
2.2 .2 - 2.2
hm2v2 + szl + hm2lev2 < (ml - m2) vl
L. ee_0__ - [ - \2--2 M2--92 )Am2v2 . s
2712 v R § - L 4 € c Nk g
So (117c) and (1174) are equivalent if
mpl{my = my)2rp? - 25 - hafes®] = m [ - m)) 5] - wvi? - lnZvi] (127e)
i.e., ir
2 2 20E , 2,2, _
[ hm 1oV, * (ml - m2) n, - hmlvl ] =

2 2AE 22
)" o - tmpv)

(=bm.m v & (m, = m
o 1 )

121

vwhich is an identity. So working back, the equivalence of (117c) and
(117d4) implies the equivalence of (117a) and (117b) without subsidiary

conditions.




Relations Corresponding to Egs. (48) = (52) when AE<O

The pair of Egs. (48b), (48c) are invariant under the inter-

change of vl,v' and of vagvg. Thus (48d) continues to hold, but

1l

working back one gets only (105), i.e,, (106) is required.

with AECO the argument (Eqs. (1CT)) showing (106) followed from

(48d) no longer is valid. So (48d) must be supplemented by (106).

Eqs. (49b), (49¢c) form another invariant pair.

Eq. (50b) becomes

=
0 ¢« v, « (2ml) [Mv2 - iml - m2|v2]

from which follows

mv, + |m -mplv, & Mvy

So, in the usual way

2 2 2.2 2
hmlvl + (ml - pz) v, * hmllml - mzlvlv2 < M2<;2

2.2 2 2AE
hmlvl - hmlmzv2 + lunllm:L - m2|v1v2 < M n

hm.m r"‘ -
- E -2 + In "V £ V1l

2 l:i-‘ -3 i‘l— - ‘éféy

S
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(118a)

(118b)

(118¢)

Eq. (118c) is equivalent to (118a), without any auxiliary conditions.




Eq. (52b) becomes

-1 . .
0 s v, ¢ (2m)7 (lmy - mylv, - My3] (119)

implying

Moy & fmy -mplv, - 2mv,

.

széstz(vg+?-:-§) < (ml-mz)evg +h -lunllml-ml

) 20E
‘ M2m2\< -hmlmv +hmll=~hml|m -ml
bm m
AE & 12 EQE_E,Va_EV‘
T I B (129b)
1 22—
which must be supplemented by
~A e - ‘— . l\v 4 AY
—11- | L 2] & ———

These results, and the results of Eqs. (87) - (89), are

sumarized at the end of section V.
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See section V.
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Figure 1 Caption

Integration region (shaded) in the v,V plane for Eq. (28).
Lines (a), (b), (c) are plots of Egs. (31a), (31b), (3le)
respectively. Lines (a), (c) intersect at v = Voo$ lines (), (e)

at v = v The ellipse (d) is a plot of Eq. (32), for the case

be’
that its intersections with the boundaries of the shaded region occur
on lines (a), (b), at v = v , vg respectively. In this case, the

limits of integration in (33) are v, = v_ and Ve " Vg

Page 60




|

Page 61

/(0)

- (b)

Fig. |



